Machine Learning (ML) ha cobrado en años recientes gran importancia en la industria y la academia en procesos de modelamiento, automatización, predicción y toma de decisiones. En los últimos años se han desarrollado una gran variedad de métodos de ML, buscando responder a la amplia disponibilidad de datos y multitud de casos de uso. Un área de gran desarrollo ha sido la de métodos generativos, tales como redes adversarias generativas o modelos de difusión, entre otros. Estos métodos han encontrado múltiples aplicaciones en la generación de contenido que puede usarse, por ejemplo, para aumentar conjuntos de datos y así mejorar el desempeño de otros métodos de aprendizaje de máquina. En particular, estos métodos han demostrado ser especialmente efectivos para datos como imágenes, textos y señales temporales. En este contexto, el curso Mastering Machine Learning en su versión 2024 se centra en métodos generativos y sus aplicaciones.
Requisitos: Estudiantes de últimos semestres de pregrados o maestría afines a ingeniería, matemáticas, física.
Idioma: Inglés
Los estudiantes regulares de la Universidad (estudiantes que estén cursando un pregrado o posgrado) no podrán inscribirse a través de la Dirección de Educación Continua a este curso. En caso de inscripción, la Dirección procederá con la devolución de la misma.
Addressed to
Profesionales interesados en el área de aprendizaje de máquina. Estudiantes de últimos semestres de pregrados o maestría afines a ingeniería, matemáticas, física.
Conditions
Eventualmente la Universidad puede verse obligada, por causas de fuerza mayor a cambiar sus profesores o cancelar el programa. En este caso el participante podrá optar por la devolución de su dinero o reinvertirlo en otro curso de Educación Continua que se ofrezca en ese momento, asumiendo la diferencia si la hubiere.
La apertura y desarrollo del programa estará sujeto al número de inscritos. El Departamento/Facultad (Unidad académica que ofrece el curso) de la Universidad de los Andes se reserva el derecho de admisión dependiendo del perfil académico de los aspirantes.