Herramientas de programación para el análisis de datos

Curso

Herramientas de programación para el análisis de datos

Facultad de Economía
Home / Programs / Herramientas de programación para el análisis de datos

Herramientas de programación para el análisis de datos

Transforma información en hallazgos ¿Sabías que el manejo experto de datos es la clave del éxito en innumerables profesiones? En este curso innovador, te enseñaremos a transformar montañas de datos en aprendizajes valiosos, de manera rápida y efectiva. Olvídate de los métodos tediosos: con nuestras técnicas avanzadas, dominarás las mejores prácticas en manejo de datos, programación, y visualización, haciendo que el análisis sea no solo eficiente, sino también emocionante.

Entra en el mundo del análisis de datos con una base en herramientas esenciales como Python, R y Stata, utilizadas por los líderes en investigación y empresas alrededor del mundo. Desde gráficos impactantes hasta estadísticas descriptivas precisas, aprenderás a sacar el máximo provecho de cada dato.

No importa tu nivel de experiencia previa, este curso te brindará los conocimientos prácticos y los principios conceptuales necesarios para destacarte en el procesamiento y análisis de datos. ¡Inscríbete ahora y conviértete en la persona hábil en el manejo de datos que todas las empresas desean tener en su equipo!

Addressed to

Profesionales interesados en aprender el uso de técnicas computacionales o algorítmicas para el análisis de datos. El curso es un primer acercamiento a las técnicas de programación para aquellas personas que no están familiarizadas con los lenguajes de programación. Ofrece a cualquier profesional la oportunidad de conocer las prácticas y consideraciones fundamentales sobre los lenguajes de programación y aplicarlas en diferentes situaciones relacionadas con la exploración y análisis de datos. Las actividades tienen un enfoque práctico para asegurar que los estudiantes adquieran los conocimientos necesarios para el análisis de datos.

Goals

  • Desarrollar pensamiento algorítmico mediante los elementos esenciales de la programación.
  • Explorar de forma autónoma las herramientas de aprendizaje disponibles para cada lenguaje de programación (documentación, blogs, casos de estudio, programación asistida con IA, etc.).
  • Extraer conocimiento significativo de las bases de datos por medio de su exploración, mediante prácticas descriptivas y de visualización.

Methodology

Para este curso no se requieren conocimientos previos de programación. El curso está organizado en tres módulos, cada uno de cinco clases. En cada módulo los estudiantes enfrentarán un conjunto de preguntas y competencias que son usualmente requeridas en el ejercicio cotidiano del análisis de datos mediante métodos computacionales.

La característica fundamental de este curso radica en que los participantes podrán explorar estas operaciones en varios lenguajes de programación, Python, R y Stata. Si bien, en clase se trabajará con el lenguaje Python, y en el material del curso de libre estudio se replicarán todos los ejercicios en los ambientes de R y Stata. En cada clase los estudiantes tendrán acercamiento guiado a los procedimientos teóricos con ejemplos aplicados en Python. Luego, se propondrán ejercicios con variaciones de los ejemplos mostrados que requieran la exploración individual de documentación, consulta en blogs, casos de estudio, etc. Con esto se espera formar en los participantes un pensamiento algorítmico abstracto y competencias de lectura y exploración de recursos (como las diferentes documentaciones) por encima de la memorización de la sintaxis en cada lenguaje.

Además, se desarrollarán discusiones cortas durante las sesiones que permitan compartir experiencias entre los estudiantes sobre las diferentes estrategias que emplean durante los ejercicios. De esta manera, los participantes del curso desarrollarán competencias de análisis crítico sobre la utilidad y relevancia de las herramientas utilizadas en el curso.

El primer módulo es conceptual y busca generar conciencia de los conocimientos previos en lógica y matemáticas básicas que son necesarios para utilizar los lenguajes de programación. El segundo módulo se enfoca en el procesamiento de los datos para generar análisis eficientes y realizar exploración con estadísticas descriptivas. El tercer módulo busca generar visualización de datos con base en código, que permite comunicar los hallazgos más importantes del proceso de análisis.

Content

Módulo 1:

Entendiendo los lenguajes de programación para el análisis de datos (10 horas). En este módulo los estudiantes serán capaces de responder a las preguntas: ¿Qué son los LP, su clasificación y su importancia actual?, ¿Qué es un algoritmo?, ¿Qué es el pensamiento algorítmico?, ¿Cuál es el mejor LP para cada necesidad?, ¿Qué LP debo usar en mi trabajo?, ¿Qué son los scripts o bitácoras? Además, podrán explorar las primeras preguntas sobre los aspectos técnicos de un LP: ¿Qué son elementos mutables e inmutables?, ¿Qué es un ciclo y para qué sirve?, ¿Qué es una función?, ¿Qué son macros?, ¿Qué son los condicionales y operadores lógicos?, ¿Cómo organizar el código siguiendo buenas prácticas de programación?

Módulo 2:

Aplicaciones al procesamiento de bases de datos (10 horas). En este módulo los estudiantes serán capaces de responder a las preguntas: ¿Cómo cargar información con cada entorno de análisis basado en código?, ¿Qué son las estructuras de datos?, ¿Qué formas de organizar bases de datos existen?, ¿Cómo puedo reestructurar las bases de datos?, ¿Cómo puedo generar nuevas variables?, ¿Cómo puedo combinar bases de datos o hacer cruces entre ellas?, ¿Cómo puedo generar estadísticas descriptivas de los datos?

Módulo 3:

Visualización de datos (10 horas). En este módulo los estudiantes realizarán actividades aplicadas a necesidades cotidianas que nos plantean las siguientes preguntas: ¿Cómo observo el comportamiento de los datos a través de categorías de análisis?, ¿Cómo observo el comportamiento de los datos a través de relaciones entre variables?, ¿Cómo puedo estimar coeficientes de correlación?, ¿Cómo comunico los hallazgos de la exploración de datos?

Professors

Alfredo Eleazar Orozco Quesada

Economista de la Universidad de los Andes. Actualmente, desarrollador de tecnologías emergentes para la ADRES. Desarrollador y consultor con experiencia en diseño de soluciones tecnológicas, de entrenamiento corporativo y estratégicas en organizaciones privadas y no gubernamentales. Proyectos previos incluyen plataformas web (servidores y clientes) para la recolección de datos en procesos de investigación científica, diseño e implementación de espacios virtuales online, y aplicaciones Android. Experiencia docente en microeconomía, programación e inteligencia artificial. Página web: https://www.alfredo-orozco.co/

Miguel Garzón Ramírez

Ingeniero y Magister en Ingeniería Industrial de la Universidad Nacional de Colombia, Magister en Economía de la Universidad de los Andes. Actualmente es profesional senior de proyectos en la Organización Internacional para las Migraciones de las Naciones Unidas. También es profesor de cátedra de la Facultad de Economía y coordinador académico de los cursos de Habilidades para Analistas de Datos del programa Todos a la U de la Agencia Atenea en la Universidad de los Andes. Ha trabajado con análisis de datos, inteligencia de negocios y evaluación de impacto en temas relacionados con contratación pública y economía urbana. Cuenta con más de 10 años de experiencia como docente y también ha sido profesor en la Universidad Nacional de Colombia y en la Universidad Externado de Colombia. Ha hecho parte de diferentes entidades públicas como la Secretaría Distrital de Movilidad, la Secretaría Distrital de Planeación y la Agencia Nacional de Contratación Pública - Colombia Compra Eficiente, analizando grandes volúmenes de datos y realizando estudios económicos.

Conditions

Eventualmente la Universidad puede verse obligada, por causas de fuerza mayor a cambiar sus profesores o cancelar el programa. En este caso el participante podrá optar por la devolución de su dinero o reinvertirlo en otro curso de Educación Continua que se ofrezca en ese momento, asumiendo la diferencia si la hubiere.

La apertura y desarrollo del programa estará sujeto al número de inscritos. El Departamento/Facultad (Unidad académica que ofrece el curso) de la Universidad de los Andes se reserva el derecho de admisión dependiendo del perfil académico de los aspirantes.