Machine Learning (ML) ha cobrado en años recientes gran importancia en la industria y la academia en procesos de modelamiento, automatización, predicción y toma de decisiones. En los últimos años se han desarrollado una gran variedad de métodos de ML, buscando responder a la amplia disponibilidad de datos y multitud de casos de uso. Un área de gran desarrollo ha sido la de métodos generativos, tales como redes adversarias generativas o modelos de difusión, entre otros. Estos métodos han encontrado múltiples aplicaciones en la generación de contenido que puede usarse, por ejemplo, para aumentar conjuntos de datos y así mejorar el desempeño de otros métodos de aprendizaje de máquina. En particular, estos métodos han demostrado ser especialmente efectivos para datos como imágenes, textos y señales temporales. En este contexto, el curso Mastering Machine Learning en su versión 2024 se centra en métodos generativos y sus aplicaciones.
Requisitos: Estudiantes de últimos semestres de pregrados o maestría afines a ingeniería, matemáticas, física.
Idioma: Inglés
Los estudiantes regulares de la Universidad (estudiantes que estén cursando un pregrado o posgrado) no podrán inscribirse a través de la Dirección de Educación Continua a este curso. En caso de inscripción, la Dirección procederá con la devolución de la misma.
Dirigido a
Profesionales interesados en el área de aprendizaje de máquina. Estudiantes de últimos semestres de pregrados o maestría afines a ingeniería, matemáticas, física.
Condiciones
Eventualmente la Universidad puede verse obligada, por causas de fuerza mayor a cambiar sus profesores o cancelar el programa. En este caso el participante podrá optar por la devolución de su dinero o reinvertirlo en otro curso de Educación Continua que se ofrezca en ese momento, asumiendo la diferencia si la hubiere.
La apertura y desarrollo del programa estará sujeto al número de inscritos. El Departamento/Facultad (Unidad académica que ofrece el curso) de la Universidad de los Andes se reserva el derecho de admisión dependiendo del perfil académico de los aspirantes.