El machine learning no supervisado capacita a las máquinas para aprender patrones y estructuras complejas sin necesidad de datos etiquetados. Al no utilizar anotaciones que indiquen cuál es la salida correcta para los datos, estos algoritmos deben descubrir por sí mismos las estructuras o relaciones inherentes en estos. Este tipo de aprendizaje es esencial para identificar patrones útiles que puedan ser utilizados en la toma de decisiones en una amplia gama de campos y aplicaciones, y contribuye en la construcción de otros tipos modelos a partir de datos.
Este curso explora en profundidad las técnicas fundamentales del aprendizaje no supervisado, como la agrupación, la reducción de la dimensionalidad y la detección de anomalías. Al finalizar el curso el estudiante estará en capacidad de aplicar estas técnicas para desarrollar soluciones alineadas con problemas específicos y las características de los datos disponibles. Se guiará a los estudiantes a través del proceso de aprendizaje a partir de datos, capacitándolos para abordar diversos casos de estudio en actividades prácticas y así interactuar con una amplia gama de contextos de aplicación.
Plataforma virtual: Este curso hace parte de la Maestría en Inteligencia Artificial de la Universidad de los Andes en la plataforma Coursera.
Idioma: Los cursos serán ofrecidos 100% en español. Sin embargo, es recomendable que tengas un buen nivel de compresión de lectura en inglés, pues muchos contenidos académicos serán presentados en este idioma.
Créditos académicos: 2
Podrás inscribirte a este curso bajo la categoría Extensión, los cursos bajo esta modalidad otorgan créditos y notas, por tanto, pueden ser homologables una vez el estudiante sea admitido a la Universidad, de acuerdo con el reglamento de estudiantes y de homologaciones. La aprobación de los cursos de extensión no garantiza el ingreso a ningún programa regular de la Universidad.
Si deseas homologar cursos vistos por extensión en el programa de maestría, se requiere que:
1. La nota final individual de cada curso sea superior a 3.0
2. Si es admitido, se aprueban y homologan los cursos cuya nota sea igual o mayor a 3.0 sobre 5.0, siempre y cuando el ponderado total de las notas de los 4 cursos sea igual o mayor a 4.0 sobre 5.0.
3. El total de créditos del conjunto total de cursos a homologar no sea superior a 16.
Estado
En inscripciones
Modalidad
Virtual
Fechas
04 de agosto al 27 de septiembre del 2025
Horario
Jueves de 5:30 p.m. a 6:50 p.m. Hora Colombia. Estos horarios están sujetos a modificaciones.
Duración
96.0 Horas
Inversión