Se comienza con las ecuaciones de planos, rectas, superficies cilíndricas y superficies cuádricas en 3D. A partir del concepto de vector se definen campos escalares, campos vectoriales y en general funciones vectoriales. Se tratan los principales temas del cálculo infinitesimal en varias variables como son límites, derivadas e integrales. Todo el curso está orientado para estudiar los teoremas fundamentales del cálculo vectorial: El teorema de Green, el teorema fundamental para integrales de línea, el teorema de Stokes y el teorema de Gauss. Como aplicaciones están: Optimización global; optimización restringida (multiplicadores de Lagrange); cálculo de masas, centros de masas y centroides; identificación de campos vectoriales conservativos; obtención de potenciales escalares; cálculo de trabajos y flujos.